
1

Cortex-M0+ CPU Core and
ARM Instruction Set Architecture

2

Microcontroller vs. Microprocessor
 Both have a CPU core to

execute instructions
 Microcontroller has

peripherals for embedded
interfacing and control
 Analog
 Non-logic level

signals
 Timing
 Clock generators
 Communications
 point to point
 network

 Reliability
and safety

3

Cortex-M0+ Core

4

ARM Processor Core Registers
 R0-R12 - General purpose, for data processing
 SP - Stack pointer (R13)
 Can refer to one of two SPs
 Main Stack Pointer (MSP)
 Process Stack Pointer (PSP)
 Uses MSP initially, and in Handler mode
 In Thread mode, can select either MSP or PSP

using SPSEL flag in CONTROL register.
 LR - Link Register (R14)
 Holds return address when called with Branch &

Link instruction (B&L)
 PC - program counter (R15)

5

Operating Modes

 Which SP is active depends on operating mode, and SPSEL (CONTROL register bit 1)
 SPSEL == 0: MSP
 SPSEL == 1: PSP

Thread
Mode.

MSP or PSP.

Handler
Mode
MSP

Reset

Starting
Exception
Processing

Exception
Processing
Completed

6

ARM Program Status Register

 Three views of same register
 Application PSR (APSR)
 Condition code flag bits Negative, Zero, oVerflow, Carry used for

conditional branches, extended precision math, error detection
 Interrupt PSR (IPSR)
 Holds exception number of currently executing ISR
 Execution PSR (EPSR)
 Thumb state

7

ARM Processor Core Registers

 PRIMASK - Exception mask register
 Bit 0: PM Flag
 Set to 1 to prevent activation of all exceptions with configurable priority
 Access using CPS, MSR and MRS instructions
 Use to prevent data race conditions with code needing atomicity

 CONTROL
 Bit 1: SPSEL flag
 Selects SP when in thread mode: MSP (0) or PSP (1)
 Bit 0: nPRIV flag
 Defines whether thread mode is privileged (0) or unprivileged (1)
 With OS environment,
 Threads use PSP
 OS and exception handlers (ISRs) use MSP

8

Different Instruction Sets for Different Design Spaces?

 ARM instructions optimized for resource-rich high-
performance computing systems
 Deeply pipelined processor, high clock rate, wide (e.g. 32-

bit) memory bus
 https://en.wikipedia.org/wiki/ARM_Cortex-

M#Instruction_sets

 Low-end embedded computing systems are different
 Slower clock rates, shallow pipelines
 Different cost factors – e.g. code size matters much more
 Bit and byte operations critical

https://en.wikipedia.org/wiki/ARM_Cortex-M#Instruction_sets

9

The Memory Wall

 It has been easier to speed up the CPU than the memory
 Facts of life
 Off-chip memory is slower than on-chip memory. May not want

to put all memory on-chip, even if possible.
 Flash is slower to read or write than RAM.
 Fast RAM is more expensive than slow RAM. Same for flash.

 Design for high-performance CPUs
 Use caches (small fast RAM) to make main memory (large slow

RAM, flash) look faster at a low cost.
 Put cache(s) on chip if possible.
 Increase bandwidth by widening memory bus, improving protocol,

reducing overhead, split transactions, using page mode, etc.)

 Design for low-performance CPUs
 Put memory on-chip with CPU. RAM, flash ROM
 Increase flash ROM bandwidth by widening memory bus, adding

prefetch buffer, branch target buffer, etc.
 Add cache
 Change instruction set size to reduce instruction bandwidth needed

Low
Performance

High
Performance

Double flash
bus width

10

ARM and Thumb Instructions

 Thumb reduces program memory size and
bandwidth requirements
 Subset of instructions re-encoded into fewer bits

(most 16 bits, some 32 bits)
 Not all 32-bit instructions available
 Most 16-bit instructions can only access low registers

(R0-R7), but a few can access high registers (R8-R15)

 1995: Thumb-1 instruction set
 16-bit instructions
 2003: Thumb-2 instruction set
 Adds some 32 bit instructions
 Improves speed with little memory overhead

 CPU operating state
 CPU decodes instructions based on whether in Thumb

state or ARM state - controlled by T bit
 Thumb state indicated by program counter being odd

(LSB = 1)

 Cortex-M0+ only uses Thumb instructions, is always
in Thumb state
 See ARMv6-M Architecture Reference Manual for

specifics per instruction (Section A.6.7)

11

Cortex-M Instruction Groups
Group

Instr
bits

Instructions M0,M0+,M1 M3 M4 M7 M23 M33,M35P

Thumb-1 16
ADC, ADD, ADR, AND, ASR, B, BIC, BKPT, BLX, BX, CMN, CMP, CPS, EOR, LDM, LDR, LDRB, LDRH,
LDRSB, LDRSH, LSL, LSR, MOV, MUL, MVN, NOP, ORR, POP, PUSH, REV, REV16, REVSH, ROR, RSB, SBC,
SEV, STM, STR, STRB, STRH, SUB, SVC, SXTB, SXTH, TST, UXTB, UXTH, WFE, WFI, YIELD

Yes Yes Yes Yes Yes Yes

Thumb-1 16 CBNZ, CBZ No Yes Yes Yes Yes Yes
Thumb-1 16 IT No Yes Yes Yes No Yes
Thumb-2 32 BL, DMB, DSB, ISB, MRS, MSR Yes Yes Yes Yes Yes Yes
Thumb-2 32 SDIV, UDIV No Yes Yes Yes Yes Yes

Thumb-2 32

ADC, ADD, ADR, AND, ASR, B, BFC, BFI, BIC, CDP, CLREX, CLZ, CMN, CMP, DBG, EOR, LDC, LDM,
LDR, LDRB, LDRBT, LDRD, LDREX, LDREXB, LDREXH, LDRH, LDRHT, LDRSB, LDRSBT, LDRSH,
LDRSHT, LDRT, LSL, LSR, MCR, MCRR, MLA, MLS, MOV, MOVT, MRC, MRRC, MUL, MVN, NOP, ORN,
ORR, PLD, PLDW, PLI, POP, PUSH, RBIT, REV, REV16, REVSH, ROR, RRX, RSB, SBC, SBFX, SEV, SMLAL,
SMULL, SSAT, STC, STM, STR, STRB, STRBT, STRD, STREX, STREXB, STREXH, STRH, STRHT, STRT, SUB,
SXTB, SXTH, TBB, TBH, TEQ, TST, UBFX, UMLAL, UMULL, USAT, UXTB, UXTH, WFE, WFI, YIELD

No Yes Yes Yes No Yes

DSP 32

PKH, QADD, QADD16, QADD8, QASX, QDADD, QDSUB, QSAX, QSUB, QSUB16, QSUB8, SADD16,
SADD8, SASX, SEL, SHADD16, SHADD8, SHASX, SHSAX, SHSUB16, SHSUB8, SMLABB, SMLABT, SMLATB,
SMLATT, SMLAD, SMLALBB, SMLALBT, SMLALTB, SMLALTT, SMLALD, SMLAWB, SMLAWT, SMLSD,
SMLSLD, SMMLA, SMMLS, SMMUL, SMUAD, SMULBB, SMULBT, SMULTT, SMULTB, SMULWT, SMULWB,
SMUSD, SSAT16, SSAX, SSUB16, SSUB8, SXTAB, SXTAB16, SXTAH, SXTB16, UADD16, UADD8, UASX,
UHADD16, UHADD8, UHASX, UHSAX, UHSUB16, UHSUB8, UMAAL, UQADD16, UQADD8, UQASX,
UQSAX, UQSUB16, UQSUB8, USAD8, USADA8, USAT16, USAX, USUB16, USUB8, UXTAB, UXTAB16,
UXTAH, UXTB16

No No Yes Yes No Optional

SP Float 32 VABS, VADD, VCMP, VCMPE, VCVT, VCVTR, VDIV, VLDM, VLDR, VMLA, VMLS, VMOV, VMRS, VMSR,
VMUL, VNEG, VNMLA, VNMLS, VNMUL, VPOP, VPUSH, VSQRT, VSTM, VSTR, VSUB No No Optional Optional No Optional

DP Float 32 VCVTA, VCVTM, VCVTN, VCVTP, VMAXNM, VMINNM, VRINTA, VRINTM, VRINTN, VRINTP, VRINTR,
VRINTX, VRINTZ, VSEL No No No Optional No No

TrustZone 16 BLXNS, BXNS No No No No Optional Optional
TrustZone 32 SG, TT, TTT, TTA, TTAT No No No No Optional Optional

Co-processor 16 CDP, CDP2, MCR, MCR2, MCRR, MCRR2, MRC, MRC2, MRRC, MRRC2 No No No No No Optional

https://en.wikipedia.org/wiki/ARM_Cortex-M#Instruction_sets

https://en.wikipedia.org/wiki/ARM_Cortex-M#Instruction_sets

12

Reference for ARM Instruction Set Architecture

 ARM V6-M Architecture Reference Manual,
Chapter A5. The Thumb Instruction Set Encoding
 16- or 32-bit instruction?
 Bits [15:11]
 0b11101, 0b1110, 0b11111: 32-bit instruction. Page A5-91
 Else 16-bit instruction. Page A5-84

13

Example Instruction Encoding: ADC (register)

 Page A6-106 of ARM-V6M ARM

14

Example Instruction Encoding: ADD (register)

 Page A6-109 of ARM-V6M ARM

15

Assembler Instruction Format

 <operation> <operand1> <operand2> <operand3>
 There may be fewer operands
 First operand is typically destination (<Rd>)
 Other operands are sources (<Rn>, <Rm>)

 Examples
 ADDS <Rd>, <Rn>, <Rm>
 Add registers: <Rd> = <Rn> + <Rm>
 AND <Rdn>, <Rm>
 Bitwise and: <Rdn> = <Rdn> & <Rm>
 CMP <Rn>, <Rm>
 Compare: Set condition flags based on result of computing <Rn> - <Rm>

16

Update Condition Codes in APSR?

 “S” suffix indicates the instruction updates APSR
 ADD vs. ADDS
 ADC vs. ADCS
 SUB vs. SUBS
 MOV vs. MOVS

17

USING REGISTERS

18

AAPCS Register Use Conventions

Make it easier to create modular, isolated and integrated code

 Scratch registers are not expected to be preserved upon returning from a called
subroutine
 r0-r3

 Preserved (“variable”) registers are expected to have their original values upon
returning from a called subroutine
 r4-r8, r10-r11

19

AAPCS Core Register Use

Must be saved, restored by callee-
procedure if it will modify them.
Calling subroutine expects these to
retain their value.

Must be saved, restored by callee-
procedure if it will modify them.
Calling subroutine expects these to
retain their value.

Don’t need to be saved. May
be used for arguments,
results, or temporary values.

20

Instruction Set Summary
Instruction Type Instructions
Move MOV
Load/Store LDR, LDRB, LDRH, LDRSH, LDRSB, LDM, STR, STRB, STRH, STM
Add, Subtract, Multiply ADD, ADDS, ADCS, ADR, SUB, SUBS, SBCS, RSBS, MULS
Compare CMP, CMN
Logical ANDS, EORS, ORRS, BICS, MVNS, TST
Shift and Rotate LSLS, LSRS, ASRS, RORS
Stack PUSH, POP
Conditional branch B, BL, B{cond}, BX, BLX
Extend SXTH, SXTB, UXTH, UXTB
Reverse REV, REV16, REVSH
Processor State SVC, CPSID, CPSIE, SETEND, BKPT
No Operation NOP
Hint SEV, WFE, WFI, YIELD
Barriers DMB, DSB, ISB

21

Load and Store Register Instructions

 ARM is a load/store architecture, so must
process data in registers (not memory)
 LDR: load register with word (32 bits) from
memory
 LDR <Rt>, source address

 STR: store register contents (32 bits) to
memory
 STR <Rt>, destination address

 Source and destination addresses are
specified using available addressing modes
 Offset Addressing mode: [<Rn>, <offset>]

accesses address <Rn>+<offset>
 Base Register <Rn> can be R0-R7, SP or PC
 <offset> is added or subtracted from base

register to create effective address
 Can be an immediate constant

 Can be another register, used as index <Rm>

 Auto-update: Can write effective address
back to base register
 Pre-indexing: use effective address to access

memory, then update base register
 Post-indexing: use base register to access

memory, then update base register

22

Memory Maps For Cortex M0+ and MCU

0x0000_0000

0x0001_FFFF

16 KB SRAM

128KB Flash

0x2000_0000

0x2000_2FFF

0x1FFF_F000

SRAM_U (3/4)

SRAM_L (1/4)

KL25Z128VLK4

Some RAM is located in
Code segment, allowing
code to run from RAM
to allow flash
reprogramming or for
better speed on faster
systems

23

Memory Maps For Cortex M0+ and MCU

0x0000_0000

0x0001_FFFF

16 KB SRAM

128KB Flash

0x2000_0000

0x2000_2FFF

0x1FFF_F000

SRAM_U (3/4)

SRAM_L (1/4)

KL25Z128VLK4

24

Memory
7 0

Address A B0 msbyte

A+1 B1

A+2 B2

A+3 B3 lsbyte

Endianness

 For a multi-byte value, in
what order are the bytes
stored?

 Little-Endian: Start with
least-significant byte

 Big-Endian: Start with most-
significant byte

Register
31 24 23 16 15 8 7 0

B3 B2 B1 B0

Memory
7 0

Address A B3 msbyte

A+1 B2

A+2 B1

A+3 B0 lsbyte

Register
31 24 23 16 15 8 7 0

B3 B2 B1 B0

25

ARMv6-M Endianness

 Instructions are always little-endian

 Loads and stores to Private Peripheral Bus are always little-endian

 Data: Depends on implementation, or from reset configuration
 Kinetis processors are little-endian

26

Loading/Storing Smaller Data Sizes

 Some load and store instructions can handle half-word (16 bits) and byte (8 bits)
 Store just writes to half-word or byte
 STRH, STRB

 Loading a byte or half-word requires padding or extension: What do we put in the upper bits of the
register?
 Example: How do we extend 0x80 into a full word?
 Unsigned? Then 0x80 = 128, so zero-pad to extend to word 0x0000_0080 = 128
 Signed? Then 0x80 = -128, so sign-extend to word 0xFFFF_FF80 = -128

Signed Unsigned
Byte LDRSB LDRB

Half-word LDRSH LDRH

27

In-Register Size Extension

 Can also extend byte or half-word already in a register
 Signed or unsigned (zero-pad)

 How do we extend 0x80 into a full word?
 Unsigned? Then 0x80 = 128, so zero-pad to extend to word 0x0000_0080 = 128
 Signed? Then 0x80 = -128, so sign-extend to word 0xFFFF_FF80 = -128

Signed Unsigned
Byte SXTB UXTB

Half-word SXTH UXTH

28

Load/Store Multiple

 LDM/LDMIA: load multiple registers starting from [base register], update base register afterwards
 LDM <Rn>!,<registers>
 LDM <Rn>,<registers>

 STM/STMIA: store multiple registers starting at [base register], update base register after
 STM <Rn>!, <registers>

 LDMIA and STMIA are pseudo-instructions, translated by assembler

29

Load Literal Value into Register

 Assembly pseudo-instruction: LDR <rd>,
=value
 Assembler generates code to load <rd> with

value
 Assembler selects best approach depending

on value
 Load immediate
 MOV instruction provides 8-bit unsigned immediate operand

(0-255)
 Load and shift immediate values
 Can use MOV, shift, rotate, sign extend instructions
 Load from literal pool
 1. Place value as a 32-bit literal in the program’s literal pool

(table of literal values to be loaded into registers)
 2. Use instruction LDR <rd>, [pc,#offset] where offset

indicates position of literal relative to program counter value

 Example formats for literal values (depends
on compiler and toolchain used)
 Decimal: 3909
 Hexadecimal: 0xa7ee
 Character: ‘A’
 String: “44??”

30

Move (Pseudo-)Instructions

 Copy data from one register to another without
updating condition flags
 MOV <Rd>, <Rm>

 Assembler translates pseudo-
instructions into equivalent
instructions (shifts, rotates)
 Copy data from one register to another

and update condition flags
 MOVS <Rd>, <Rm>

 Copy immediate literal value (0-255)
into register and update condition flags
 MOVS <Rd>, #<imm8>

31

Stack Operations

 Push some or all of registers (R0-R7, LR) to stack
 PUSH {<registers>}
 Decrements SP by 4 bytes for each register saved
 Pushing LR saves return address
 PUSH {r1, r2, LR}
 Always pushes registers in same order

 Pop some or all of registers (R0-R7, PC) from stack
 POP {<registers>}
 Increments SP by 4 bytes for each register restored
 If PC is popped, then execution will branch to new PC value after this POP instruction (e.g. return address)
 POP {r5, r6, r7}
 Always pops registers in same order (opposite of pushing)

32

Add Instructions

 Add registers, update condition flags
 ADDS <Rd>,<Rn>,<Rm>

 Add registers and carry bit, update condition flags
 ADCS <Rdn>,<Rm>

 Add registers
 ADD <Rdn>,<Rm>

 Add immediate value to register
 ADDS <Rd>,<Rn>,#<imm3>
 ADDS <Rdn>,#<imm8>

33

Add Instructions with Stack Pointer

 Add SP and immediate value
 ADD <Rd>, SP, #<imm8>
 ADD SP, SP, #<imm7>

 Add SP and register
 ADD <Rdm>, SP, <Rdm>
 ADD SP, <Rm>

34

Address to Register Pseudo-Instruction

 Add immediate value to PC, write result in register
 ADR <Rd>,<label>

 How is this used?
 Enables storage of constant data near program counter
 First, load register R2 with address of const_data
 ADR R2, const_data
 Second, load const_data into R2
 LDR R2, [R2]

 Value must be close to current PC value

35

Subtract

 Subtract immediate from register, update condition flags
 SUBS <Rd>, <Rn>, #<imm3>
 SUBS <Rdn>, #<imm8>

 Subtract registers, update condition flags
 SUBS <Rd>, <Rn>, <Rm>

 Subtract registers with carry, update condition flags
 SBCS <Rdn>, <Rm>

 Subtract immediate from SP
 SUB SP, SP, #<imm7>

36

Multiply

 Multiply source registers, save lower word of result in destination register, update condition flags
 MULS <Rdm>, <Rn>, <Rdm>
 <Rdm> = <Rdm> * <Rn>

 Signed multiply

 Note:
 32-bit * 32-bit = 64-bit
 Upper word of result is truncated

37

Logical Operations

 All of these instructions update the condition flags

 Bitwise AND registers
 ANDS <Rdn>,<Rm>

 Bitwise OR registers
 ORRS <Rdn>,<Rm>

 Bitwise Exclusive OR registers
 EORS <Rdn>,<Rm>

 Bitwise AND register and complement of second register
 BICS <Rdn>,<Rm>

 Move inverse of register value to destination
 MVNS <Rd>,<Rm>

 Bitwise AND two registers, discard result
 TST <Rn>, <Rm>

38

Compare

 Compare - subtracts second value from first, updates condition flags, discards result
 CMP <Rn>,#<imm8>
 CMP <Rn>,<Rm>

 Compare negative - adds two values, updates condition flags, discards result
 CMN <Rn>,<Rm>

39

Shift and Rotate

 Common features
 All of these instructions update APSR condition flags
 Shift/rotate amount (in number of bits) specified by last operand

 Logical shift left - shifts in zeroes on right
 LSLS <Rd>,<Rm>,#<imm5>
 LSLS <Rdn>,<Rm>

 Logical shift right - shifts in zeroes on left
 LSRS <Rd>,<Rm>,#<imm5>
 LSRS <Rdn>,<Rm>

 Arithmetic shift right - shifts in copies of sign bit on left (to maintain arithmetic sign)
 ASRS <Rd>,<Rm>,#<imm5>

 Rotate right
 RORS <Rdn>,<Rm>

40

Reversing Bytes

 REV - reverse all bytes in word
 REV <Rd>,<Rm>

 REV16 - reverse bytes in both half-words
 REV16 <Rd>,<Rm>

 REVSH - reverse bytes in low half-word
(signed) and sign-extend
 REVSH <Rd>,<Rm>

MSB LSB

MSB LSB

MSB LSB

MSB LSB

MSB LSB

MSB LSB
Sign extend

41

Changing Program Flow - Branches

Unconditional Branches
 B <label>
 Target address must be within 2 KB of branch instruction (-2048 B to

+2046 B)

Conditional Branches
 B<cond> <label>
 <cond> is condition - see next page
 B<cond> target address must be within of branch instruction
 B target address must be within 256 B of branch instruction (-256 B to

+254 B)

42

Condition Codes

 Append to branch instruction
(B) to make a conditional branch

 Full ARM instructions (not
Thumb or Thumb-2) support
conditional execution of
arbitrary instructions

Note: Carry bit = not-borrow
for compares and subtractions

43

Changing Program Flow - Subroutines

Call
 BL <label> - branch with link
 Call subroutine at <label>
 PC-relative, range limited to PC+/-16MB
 Save return address in LR

 BLX <Rd> - branch with link and
exchange
 Call subroutine at address in register Rd

(exchange Rd with PC)
 Supports full 4GB address range
 LSB of target address must be set to 1 to

ensure continued execution in Thumb state
 Save return address in LR

Return
 BX <Rd> branch and exchange
 Branch to address specified by <Rd>
 LSB of target address must be set to 1 to

ensure continued execution in Thumb state
 Supports full 4 GB address space
 BX LR - Return from subroutine

 POP {PC}

44

Special Register Instructions

 Move to Register from Special Register
 MSR <Rd>, <spec_reg>

 Move to Special Register from Register
 MRS <spec_reg>, <Rd>

 Change Processor State - Modify PRIMASK
register
 CPSIE - Interrupt enable
 CPSID - Interrupt disable

45

Other

 No Operation - does nothing!
 NOP

 Breakpoint - causes hard fault or debug halt - used to implement software breakpoints
 BKPT #<imm8>

 Wait for interrupt - Pause program, enter low-power state until a WFI wake-up event occurs (e.g. an
interrupt)
 WFI

 Supervisor call generates SVC exception (#11), same as software interrupt
 SVC #<imm>

	Cortex-M0+ CPU Core and �ARM Instruction Set Architecture
	Microcontroller vs. Microprocessor
	Cortex-M0+ Core
	ARM Processor Core Registers
	Operating Modes
	ARM Program Status Register
	ARM Processor Core Registers
	Different Instruction Sets for Different Design Spaces?
	The Memory Wall
	ARM and Thumb Instructions
	Cortex-M Instruction Groups
	Reference for ARM Instruction Set Architecture
	Example Instruction Encoding: ADC (register)
	Example Instruction Encoding: ADD (register)
	Assembler Instruction Format
	Update Condition Codes in APSR?
	Using Registers
	AAPCS Register Use Conventions
	AAPCS Core Register Use
	Instruction Set Summary
	Load and Store Register Instructions
	Memory Maps For Cortex M0+ and MCU
	Memory Maps For Cortex M0+ and MCU
	Endianness
	ARMv6-M Endianness
	Loading/Storing Smaller Data Sizes
	In-Register Size Extension
	Load/Store Multiple
	Load Literal Value into Register
	Move (Pseudo-)Instructions
	Stack Operations
	Add Instructions
	Add Instructions with Stack Pointer
	Address to Register Pseudo-Instruction
	Subtract
	Multiply
	Logical Operations
	Compare
	Shift and Rotate
	Reversing Bytes
	Changing Program Flow - Branches
	Condition Codes
	Changing Program Flow - Subroutines
	Special Register Instructions
	Other

