NC STATE UNIVERSITY

Cortex-M0+ CPU Core and
ARM Instruction Set Architecture

NC STATE UNIVERSITY

Microcontroller vs. Microprocessor

= Both have a CPU core to :_—AF{M@ConexTM-M0+ 1| System | Memories and Clocks
. . Core Memory Interfaces
. Debug I watchdog Program locked loop
= Microcontroller has | Lerces | |, fash
. Frequency-
peripherals for embedded | e : DMA locked loop
. . HAM
interfacing and control : controller : i
! BME frequency
- Analog I MTB | oscillator
. |
= Non-logic level ' : reforenee
. | clocks
.. Security Anal Ti C icati Human-Machine
= Tlmlng and Integrity naed mers Ic’rgen:f:zg:sa on Interface (HMI)
= Clock generators Internal 16-bit ADC Timers
g watchdog x1 1x6¢ch+2x2ch 2c GP.ItﬁS
. . wl
= Communications — - x2 interrupt
. point to point com;;)(e;ra or powgq timer Cow power
= network U£1R T TSt
L 6-bit DAC et
= Reliability timers SPI
X2
and safet -
Y 12-bit DAC RTC
UART
X2
USB LS/FS
x1

Cortex-M0+ Core

Cortex-M0+ Components

Interrupts

NC STATE UNIVERSITY

Cortex-M0+ Processor

Optional Debug v
»| Nested .
Vectored Cortex-M0O+ Breakpoint & M%r};l?rr::::e
Interrupt (m——» processor (e \\atchpoint Buffer
Controller core Units (MTB)
> (NVIC)
A t 1
Optional Optional
Wakeup Memory Debugger <
Interrupt Protection interface J
Controller Unit (MPU)
(WIC) ,
t Optional
Debug
: Access
Bus matrix
> . I Port
A f 1‘
M O ‘ I O * I
| i ptiona ptiona
AHBt{I}_ge;?et?nrface single-cycle Serial-Wire or JTAG
y I/O port debug port

NC STATE UNIVERSITY

= RO-R12 - General purpose, for data processing
= SP - Stack pointer (R13)

ARM Processor Core Registers

' N
RO = Can refer to one of two SPs
R1 = Main Stack Pointer (MSP)
R2 = Process Stack Pointer (PSP)

Low registers R3 = Uses MSP initially, and in Handler mode

R4 * |In Thread mode, can select either MSP or PSP
R5 using SPSEL flag in CONTROL register.
R6 C* LR - Link Register (R14)
R7 = Holds return address when called with Branch &

~ RS Link instruction (B&L)
R9 = PC - program counter (R15)

High registers R10 Banked stack pointers

R11

- R12 D [)

Active Stack Pointer SP (R13) ——» PSP MSP
Link Register LR (R14)
Program Counter PC (R15)
PSR Program Status Register
PRIMASK Interrupt mask register Special registers
CONTROL Control Register

NC STATE UNIVERSITY

Operating Modes

Reset

Thread
Mode.

\ SP or PSP

Exception Starting
Processing Exception
Completed Processing

»

e T T
H

andler
Mode
MSP

= Which SP is active depends on operating mode, and SPSEL (CONTROL register bit |)
= SPSEL == 0: MSP
= SPSEL == I: PSP

ARM Program Status Register

APSR

IPSR

EPSR

NC STATE UNIVERSITY

2130209827 252423 5 0
Mnemonic extension Meaning Condition flags
NlZ|C]|V Reserved
EQ Equal Z=1
Reserved Exception number NE Not equal £Z=0
Csa Carry set C=1
Reserved T Reserved b Carry clear C—o
MI Minus. negative N=1
. . PL Plus. posttive or zero N=0
= Three views of same register
. . Vs Owverflow V=
= Application PSR (APSR) > — .
O O O | —
.
Condition code flag bits Negative, Zero, oVerflow, Carry used for —_ Cnsrened hagher C1ad7—0
conditional branches, extended precision math, error detection — T —
LS Unsigned lower or same C=0orZ=—1
. Interru Pt PSR (I PS R) GE Signed greater than or equal N=—V
= Holds exception number of currently executing ISR T Signed less than NI=V
= Execution PSR (EPSR) cr Signed greater than Z=0andN=V
* Thumb state LE Signed less than or equal Z=1looNI=V
None (AL) 4 Always (unconditional) Any

NC STATE UNIVERSITY

ARM Processor Core Registers

= PRIMASK - Exception mask register

= Bit 0: PM Flag
= Set to | to prevent activation of all exceptions with configurable priority

= Access using CPS, MSR and MRS instructions
= Use to prevent data race conditions with code needing atomicity

= CONTROL
= Bit |: SPSEL flag
= Selects SP when in thread mode: MSP (0) or PSP (1)
= Bit 0: nPRIV flag
= Defines whether thread mode is privileged (0) or unprivileged (1)
= With OS environment,
= Threads use PSP
= OS and exception handlers (ISRs) use MSP

NC STATE UNIVERSITY

Different Instruction Sets for Different Design Spaces!?

= ARM instructions optimized for resource-rich high-
performance computing systems

= Deeply pipelined processor; high clock rate, wide (e.g. 32-
bit) memory bus

= https://en.wikipedia.org/wiki/ARM_Cortex-
M#lInstruction_sets

= Low-end embedded computing systems are different
= Slower clock rates, shallow pipelines

= Different cost factors — e.g. code size matters much more
= Bit and byte operations critical

https://en.wikipedia.org/wiki/ARM_Cortex-M#Instruction_sets

NC STATE UNIVERSITY

The Memory Wall

= |t has been easier to speed up the CPU than the memory
= Facts of life

= Off-chip memory is slower than on-chip memory. May not want
to put all memory on-chip, even if possible.

= Flash is slower to read or write than RAM.
= Fast RAM is more expensive than slow RAM. Same for flash.

= Design for high-performance CPUs CW

= Use caches (small fast RAM) to make main memory (large slow
RAM, flash) look faster at a low cost.

= Put cache(s) on chip if possible. [7% 1 " -
* Increase bandwidth by widening memory bus, improving protocol, | E“j\f_ﬂ/"/
reducing overhead, split transactions, using page mode, etc.) /
= Design for low-performance CPUs -
= Put memory on-chip with CPU. RAM, flash ROM eboronce (M)
= Increase flash ROM bandwidth by widening memory bus, adding %\\S*M B
prefetch buffer, branch target buffer, etc. Low High
= Add cache Performance Performance

= Change instruction set size to reduce instruction bandwidth needed

NC STATE UNIVERSITY

ARM and Thumb Instructions

* Thumb reduces program memory size and

bandwidth requirements * CPU operating state
= CPU decodes instructions based on whether in Thumb

state or ARM state - controlled by T bit
= Thumb state indicated by program counter being odd

= Most |6-bit instructions can only access low registers (LSB=1) |
(RO-R7), but a few can access high registers (R8-R15) = Cortex-MO0+ only uses Thumb instructions, is always

= Subset of instructions re-encoded into fewer bits
(most 16 bits, some 32 bits)

= Not all 32-bit instructions available

= 1995:Thumb-1 instruction set in Thumb state
= | 6-bit instructions = See ARMv6-M Architecture Reference Manual for
= 2003: Thumb-2 instruction set specifics per instruction (Section A.6.7)

= Adds some 32 bit instructions
= Improves speed with little memory overhead

NC STATE UNIVERSITY

Cortex-M Instruction Groups

Group bits Instructions MO,M0+MI M3 M4 M7 M23 M33M35P
ADC, ADD, ADR, AND, ASR, B, BIC, BKPT, BLX, BX, CMN, CMP, CPS, EOR, LDM, LDR, LDRB, LDRH,
Thumb-| 16 LDRSB, LDRSH, LSL, LSR, MOV, MUL, MVYN, NOP, ORR, POP, PUSH, REY, REV16, REVSH, ROR, RSB, SBC, Yes Yes Yes Yes Yes Yes
SEV, STM, STR, STRB, STRH, SUB, SVC, SXTB, SXTH, TST, UXTB, UXTH, WFE, WFI, YIELD
Thumb-I 16 CBNZ,CBZ No Yes Yes Yes Yes Yes
Thumb-I 16 |IT No Yes Yes Yes No Yes
Thumb-2 32 BL, DMB, DSB, ISB, MRS, MSR Yes Yes Yes Yes Yes Yes
Thumb-2 32 SDIV, UDIv No Yes Yes Yes Yes Yes
ADC, ADD, ADR, AND, ASR, B, BFC, BFI, BIC, CDP, CLREX, CLZ, CMN, CMP, DBG, EOR, LDC, LDM,
LDR, LDRB, LDRBT, LDRD, LDREX, LDREXB, LDREXH, LDRH, LDRHT, LDRSB, LDRSBT, LDRSH,
Thumb-2 3 LDRSHT, LDRT, LSL, LSR, MCR, MCRR, MLA, MLS, MOV, MOVT, MRC, MRRC, MUL, MYN, NOP, ORN, No Yes Yes Yes No Yes
ORR, PLD, PLDWV, PLI, POP, PUSH, RBIT, REV, REV 16, REVSH, ROR, RRX, RSB, SBC, SBFX, SEV, SMLAL,
SMULL, SSAT, STC, STM, STR, STRB, STRBT, STRD, STREX, STREXB, STREXH, STRH, STRHT, STRT, SUB,
SXTB, SXTH, TBB, TBH, TEQ, TST, UBFX, UMLAL, UMULL, USAT, UXTB, UXTH, WFE, WFI, YIELD
PKH, QADD, QADD 16, QADDS, QASX, QDADD, QDSUB, QSAX, QSUB, QSUBI16, QSUBS, SADD 16,
SADDS, SASX, SEL, SHADD 6, SHADDS8, SHASX, SHSAX, SHSUB 16, SHSUBS, SMLABB, SMLABT, SMLATB,
SMLATT, SMLAD, SMLALBB, SMLALBT, SMLALTB, SMLALTT, SMLALD, SMLAWB, SMLAWT, SMLSD,
DSP 3 SMLSLD, SMMLA, SMMLS, SMMUL, SMUAD, SMULBB, SMULBT, SMULTT, SMULTB, SMULWT, SMULWSB, No No Yes Yes No ©ieied
SMUSD, SSAT 16, SSAX, SSUBI6, SSUB8, SXTAB, SXTABI6, SXTAH, SXTBI16, UADD 16, UADDS8, UASX,
UHADDI6, UHADDS8, UHASX, UHSAX, UHSUBI 6, UHSUBS8, UMAAL, UQADD |6, UQADDS, UQASX,
UQSAX, UQSUBI 6, UQSUBS, USADS, USADAS, USAT 16, USAX, USUBI 6, USUBS, UXTAB, UXTABI 6,
UXTAH, UXTBI6
SP Float 3 VABS, VADD, VCMP, VCMPE, VCVT, VCVTR, VDIV, VLDM, VLDR, VMLA, YMLS, YMOYV, YMRS, VMSR, No BB Optional | Optional No Spiienel
VMUL, VNEG, YNMLA, VNMLS, YNMUL, VPOP, VPUSH, VSQRT, VSTM, VSTR, VSUB
DP Float 3 xg:[/\]-r-?x’v\fp\\f[:[:z?/\(/:s\é{'\l VCVTP, VMAXNM, VMINNM, VRINTA, VRINTM, VRINTN, VRINTP, VRINTR, No No No Spittein No No
TrustZone 16 BLXNS, BXNS No No No No Optional Optional
TrustZone 32 SG,TT, TTT, TTA, TTAT No No No No Optional Optional
Co-processor 16 CDP, CDP2, MCR, MCR2, MCRR, MCRR2, MRC, MRC2, MRRC, MRRC2 No No No No No Optional

https://en.wikipedia.org/wiki/ARM_Cortex-M#lnstruction_sets

https://en.wikipedia.org/wiki/ARM_Cortex-M#Instruction_sets

NC STATE UNIVERSITY

Reference for ARM Instruction Set Architecture

= ARMV6-M Architecture Reference Manual, T eacoding of 16-0if Thumb mstructions is:
Chapter A5.The Thumb Instruction Set Encoding

- I 6- or 3 2-b It Instruction ? I_’L_Q Table A5-1 shows the allocation of 16-bit instruction encodings.

~ / Table A5-1 16-bit Thumb instruction encoding

|
opcode Instruction or instruction class

00xxxx Shift (immediate), add, subtract, move, and compare on page A5-85

; . ; . . 010000 Data pr] A5-86
The encoding of 32-bit Thumb instructions 1s: atd processing on page

“—
1514131211109 8 7 6 56 4 3 2 1 0|1514131211109 8 7 6 6 4 3 2 1 O

010001 Special data instructions and branch and exchange on page A5-87

1 1 1 | op1 | 0p| 01001x Load from Literal Pool, see LDR (literal) on page A6-141
) 0101xx Load/store single data item on page A5-88
For 32-bit Thumb encoding, opl !=@boe. If opl = b0, a 16-bit instruction is encoded, see 16-bir Thumb g pag
mstruction encoding on page A5-84. O1Txxx
100xxx

Table A5-9 shows the allocation of ARMwv6-M Thumb encodings in this space.
10100x Generate PC-relative address, see ADR on page A6-115

Table A5-9 32-bit Thumb encoding _ - —
10101x Generate SP-relative address, see ADD (SP plus immediate) on page A6-111

op1 op Instruction class 1011xx Miscellaneous 16-bit instructions on page AS5-89

x1 X UNDEFINED 11000x Store multiple registers, see STM, STMI4, STMEA on page A6-175
10 1 See Branch and miscellaneous conirol 11001x Load multiple registers, see LDM, LDMI4, LDMFD on page A6-137
10 0 UNDEFINED 1101xx Conditional branch, and Supervisor Call on page A5-90

11100x Unconditional Branch, see B on page A6-119

Example Instruction Encoding: ADC (register)

MO+
ADC (register) \@\/(©& o ”i ﬁ(f/\

Add with Carry (register) adds a register value, the carry flag Value and Weglster valué%x

and writes the result to the destination register. It updafes the condition flags Based on the result.

—a
Encoding T1 All versions of the Thumb instruction set. \ t:j é ;
ADCS <Rdn>, <Rm> >-%

Z./
1514131211109 8 7 6\5 4 312 1 0 ;
0 10000f0o10 7] Rm J Rdn Operation
@(Rdn); _h = UTnt(Rdn); m = UInt(Rm); setflags = !InITBlock(); if ConditionPassed() the
~SIT T, SMTTt_n) = (SRType_LSL, 0); EncodingSpecificOperations();
—strifted = SAft(R[n], shift_t, shift.n, APSR.CIT ™
Assembler syntax (result, carry, overflow) = AddW1thCarry(R[nJ, shifted, APSR.C);
R[d] = result; —
ADCS{<g>} {<Rd>,} <Rn>, <Rm> T setﬂags than
where: APSR.N = result<31>;

APSR.Z = IsZeroBit(result);

S The mstruction updates the flags. APSRC = carry:
{<q>} See Standard assembler syntax fields on page A6-98. APSR;!_ = overflow;
<Rd> The destination register. If <Rd> is omitted, this register is the same as <Rn>.
I ; 5 = Page A6-106 of ARM-V6M ARM
ﬂ The register that contains the first operand.

v
<Rm> The register that 1s optionally shifted and used as the second operand.

NC STATE UNIVERSITY

Example Instruction Encoding: ADD (register)

ADD (register) Assembler syntax

This instruction adds a register value and an optionally-shifted register value. and writes the result to the = ADD{S}{<q>} {<Rd>,} <Rn>, <Rm>
destination register. Encoding T1 updates the condition tlags based on the result.

where:
Encoding T1 All versions of the Thumb instruction set. S If present, specifies that the instruction updates the flags. Otherwise, the instruction does not
ADDS <Rd>, <Rn>, <Rm> @ #_R update the flags.
1514131211109 8 7 6 54 3 2 1 0 {<gq>} See Standard assembler syntax fields on page A6-98.
0 0o0]t1t 1]Jojo] Rm | Rn | Rd . : . L :
<Rd> The destination register. If <Rd> 1s omutted, this register 1s the same as <Rn> and encoding T2
d = UInt(RA): n = UInt(Rn): m = UInt(Rm): setflags = !InITBlock(): 1s pteierred to encgdmg T1 1fboth are avallab‘le. If <Rd> 1s spec1ﬁeq_ encodn.lg T11s
(shift_t, shift_n) = (SRType_LSL, 0): preferred to encoding T2. If Ram> is not the PC, the PC can be used in encoding T2.
Encoding T2 All versions of the Thumb instruction set. <Rn> The register that contains the first operand. If the SP is specified for <Rn>, see 4DD (SP plus
ADD <Rdn> . <R register) on page A6-113. If R<m> 1s not the PC, the PC can be used n encoding T2.
<Rm> The register that 1s used as the second operand. The PC can be used in encoding T2.
151413121109 8 7 6 5 4 3 2 1 0
01000 1o o] | Rm Rdn Operation

DN , o
if ConditionPassed() then

. . \ . . , EncodingSpecificOperations();

if 1101" || Rm == "1101" then SEE ADD (SP plus register); shifted = Shift(R[m], shift.t, shift.n, APSR.C):

n=d; m= UInt(Rm); setflags = FALSE; (shift_t, shift_n) = (SRType_LSL, @); (result, carry, overflow) = AddwithCarry(R[n], shifted, '0');
m == 15 then UNPREDICTABLE; iF d ==’15 theé J ! ’
if d == 15 && InITBlock() && !LastInITBlock() then UNPREDICTABLE; ALUWFitePC(result): // setflags is always FALSE here

else
R[d] = result;
= Page A6-109 of ARM-V6M ARM if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
APSR.V = overflow;

NC STATE UNIVERSITY

Assembler Instruction Format

= <operation> <operand|> <operzﬁl2> <oBeTrand3>
= There may be fewer operands _L —
= First operand is typically destination (<Rd>)

= Other operands are sources (<Rn>, <Rm>)

= Examples
= ADDS <Rd>, <Rn>, <Rm>
= Add registers: <Rd> = <Rn> + <Rm>
= AND <Rdn>, <Rm>
= Bitwise and: <Rdn> = <Rdn> & <Rm>
= CMP <Rn>, <Rm>
= Compare: Set condition flags based on result of computing <Rn> - <Rm>

Update Condition Codes in APSR!?

3130292827 252423 . 6 5 0

APSR INJ1Z|C|V Reserved

= “S” suffix indicates the instruction updates APSR

Ao L2
= SUB vs. SUBS &)\\ 0 (X XO

= MOV vs. MOVS

NC STATE UNIVERSITY

USING REGISTERS

NC STATE UNIVERSITY

AAPCS Register Use Conventions

\{:\/\épﬁi%/\
= Make it easier to create modular, isolated and integrated code e
" Scratch registers are not expected to be preserved upon returning from a c%kd
subroutine—— \

%;A% SEQ A\ RO

2/

= r0-r3

N

" Preserved (“‘variable”) registers

returning from a called subroutin
“ r4-r8,rl0-rl |

AAPCS Core Register Use

Register | Synonym | Special Role in the procedure call standard
15 PC The Program Counter.
r14 LR The Link Reqgister.
r3 SP The Stack Pointer.
r12 P The Intra-Procedure-call scratch reqister.

Variable-register 8. Must be saved, restored by callee-

procedure if it will modify them.

subroutine expects these to

Platform register. \ petain their
The meaning of this regi_.—. — ..o, o peoeil.

Vanable-register 7.

5| = Narmeregeers | —

= v Variable register 4. Must be sav.eq, re.stored Py callee-

p. 3 Variable register 3. procedure if it will modify them.
Calling subroutine expects these to

= V2 Vanable register 2. retain their value.

r4 vl Vanable register 1. |

r3 ad Argument / scratch register 4. |

r2 a3 Argument / scratch register 3. Don’t need to be saved. May

ri a’? Argument / result / scratch register 2. be used for arguments,

r0 at Argument / result / scratch register 1 results, or temporalry values.

NC STATE UNIVERSITY

NC STATE UNIVERSITY
Instruction Set Summary

MOV

LDR, LDRB, LDRH, LDRSH, LDRSB, LDM, STR, STRB, STRH, STM
ADD,ADDS,ADCS, ADR, SUB, SUBS, SBCS, RSBS, MULS
CMP,CMN

ANDS, EORS, ORRS, BICS, MVNS, TST

LSLS, LSRS,ASRS, RORS
EETTSN PUSH, POP

B, BL, B{cond}, BX, BLX

SXTH, SXTB, UXTH, UXTB

REV,REV 16, REVSH

SVC, CPSID, CPSIE, SETEND, BKPT

NOP

[T SEV,WFE,WFI,YIELD

DMB, DSB, ISB

20

NC STATE UNIVERSITY

¢

Load and Store Register Instructions (/\ OMJ

= ARM is a load/store architecture, so must = Source and destination addresses are
process data in registers (not memory) specified using available addressing modes

= LDR: load register with word (32 bits) from * Offset Addressing mode: [<Rn>, <offset>] | %/4:; +

“memor), D - accesses address <Rn>+<offset> i
- LDR <Rt>, source address = Base Register <Rn> can be R0-R7, SP or PC >
% - —) = <offset> is added or subtracted from base C

= STR:store register contents (32 bits) to

register to create effective address

memory = Can be an immediate constant _ \ AvC('O
= STR <Rt>, destination address = Can be another register, used as index <Rm>L5
M J2— = Auto-update: Can write effective address|
UDYM A back to base register

3% . = Pre-indexing: use effective address to access
" o “ memory, then update base register
D [0\ ’
D 7k = Post-indexing: use base register to access

CX i memory, then update base register

21

NC STATE UNIVERSITY

Memory Maps For Cortex M0+ and MCU

OXFFFFFFFF
System 511MB KL257128VLK4
0xE0100000
Private Peripheral Bus 1MB ?J))((IIEE?J%ZZZZE OXZOOO—Z FFF
OXDFFFFFFF
SRAM_U (3/4)
. 16 KB SRAM
External device 1.0GB
————————————————— 0x2000_0000
SRAhA_L(l/4 Ox1FFF FOOO
oy, X — Some RAM is located in
Code segment, allowing
code to run from RAM
External RAM 1.0GB
to allow flash
reprogramming or for
0x60000000 Ox0001_FFFF better speed on faster
OXSFFFFFFF
_ systems
Peripheral 0.5GB
0x4000
Ox3FEFFFFF
SRAM 0.5GB 128KB Flash
" 020000000
OX1FFFFFFF
Code 0.5GB /

000000000 0x0000_0000

22

Memory Maps For Cortex MO+ and MCU

23

L
Private Peripheral Bus ’IﬁB

< External device 1.0GB

ystem 511VB

OXFFFFFFFF

0xE0100000

OxEOOFFFFF

>0)(E0000000

,,/""_—==:::::::l‘-.\
—

External RAM / 1.0GB

Periphera 0.5GB
e

0.5GB

01

OXDFFFFFFF

D

0xA0000000
Ox9FFFFFFF

0x60000000
OXSFFFFFFF

0x40000260
OX3FFpFFFF

0x20000000

Code 0.5GEB

OX1FFFFFFF

SRAM_U (3/4)

SRAM_L (1/4

KL25Z128VLK4

16 KB SRAM

&)

\

= ———— 1

0x00000000

emm——

—

A 4

128KB Flash

0x2000_2FFF

AN

0¥2000_0000
C}%xlFFFF000X§~k:=’:;i§_—————?
AM

0x0001_FFFF

NC STATE UNIVERSITY

OXOOOO_OOOO

= RO

DA@

—

T

Endianness

* For a multi-byte value, in
what order are the bytes
stored!?

= Little-Endian: Start with

least-significant byte

= Big-Endian: Start with most-
significant byte

24

Address

Address

NC STATE UNIVERSITY

Memory
7 0 Register
31 2423 16i{ 15 8 0
7 N 80 |
@) 86\3 msbyte B3 B2 Bl (.éo
Bl
A+2 B2
A+3 B3 Isbyte
Memory
7 0 :
Register
A 31 ..24:23 16i 15 8 0
8= |msbyte Yy B3) | B2 BL | (80
N—
A+1 B2
A+2 Bl
A+3 BO /& Sbyte

ARMv6-M Endianness

= Instructions are always little-endian
= Loads and stores to Private Peripheral Bus are always little-endian

= Data: Depends on implementation, or from reset configuration
= Kinetis processors are little-endian

25

NC STATE UNIVERSITY

Loading/Storing Smaller Data Sizes

S TSgned lunsigned

= Some load and store instructions can handle half-word (16 bits) and byte (8 bits)

= Store just writes to half-word or byte
= STRH,STRB
= Loading a byte or half-word requires padding or extension:VWhat do we put in the upper bits of the

register!?
= Example: How do we extend 0x80 into a full word? @

= Unsigned? Then 0x80 = 128, so zero-pad to extend to word 0x0000_0080 = 128 U

= Signed? Then OXSQ = -128, so sign-extend to word OxFFFF_FF80 = -128 \\\Q[(/Z((L (\\\t\B/\

A
/
(06D BOoOD ZZ &90/»{\- Al Mot
W/
™ AV 16 F

ga\g\‘\ (;@ﬁ\,\/‘@

26

NC STATE UNIVERSITY

In-Register Size Extension

S ISgned |Umsignea

= Can also extend byte or half-word already in a register

= Signed or unsigned (zero-pad)
= How do we extend 0x80 into a full word?

= Unsigned? Then 0x80 = 128, so zero-pad to extend to word 0x0000_0080 = 128
= Signed? Then 0x80 = -128, so sign-extend to word OxFFFF_FF80 = -128

27

NC STATE UNIVERSITY

Load/Store Multiple

= LDM/LDMIA: load multiple registers starting from [base register], update base register afterwards
M arterwe

= LDM <Rn>!,<register$\>_,_ Z (\@l (‘\(([‘23

= LDM <Rn>,<registers>

R —7

o wTMIA: store multiple registers starting at [base register], update base register after
= STM <Rn>!, <registers> - —

= LDMIA and STMIA are pseudo-instructions, translated by assembler

28

-]

—a—>

=

NC STATE UNIVERSITY

==
T2l

e,

NC STATE UNIVERSITY

Load Literal Value into Register

= Assembly pseudo-instruction: LDR <rd>, = Example formats for literal values (depends

=value on compiler and toolchain used)
= Assembler generates code to load <rd> with = Decimal: 3909
value = Hexadecimal: Oxa7ee

= Assembler selects best approach depending = Character:’A’
on value = String:“44?

= Load immediate (\\
© = MOV instruction provides 8-bit unsigned immediate operand [6/\ \ N
< (0-255) k \ ('J%m((I‘/‘Fefa) ﬁ]

* Load and shift immediate values
= Can use MOV, shift, rotate, sign extend instructions

* Load from literal poel— ‘/\—w Y\Z !f('\

\J
= |.Place value as a 32-bit literal in the program’s literal pool

(table of literal values to be loaded into registers) /

= 2.Use instruction LDR <rd>, [pc,#offset] where offset -

indicates position of literal relative to program counter value 7 A lr (
<3 - r] @foa\}

29

NC STATE UNIVERSITY

Move (Pseudo-)Instructions

= Copy data from one register to another without
updating condition flags MOV instruction Canonical form

= MOV <Rd>, <Rm> MOVS <Rd>,<Rm>,ASR #<n> ASRS <Rd>,<Rm>,#<n>

MOVS <Rd>,<Rm>,LSL #<n> LSLS <Rd>, <Rm>, #<n>

= Assembler translates pseudo-
instructions into equivalent

instructions (ShiftS, rotates) MOVS <Rd>,<Rm>,ASR <Rs> ASRS <Rd>,<Rm>,<Rs>

= Copy data from one register to another MOVS <Rd>,<Rm>,LSL <Rs> LSLS <Rd>,<Rm>,<Rs>

and update condition flags
= MOVS <Rd>, <Rm>

= Copy immediate literal value (0-255) MOVS <Rd>,<Rm>,ROR <Rs> RORS <Rd>,<Rm>,<Rs>

into register and update condition flags
= MOVS <Rd>, #<imm8>

MOVS <Rd>,<Rm>,LSR #<n> LSRS <Rd>, <Rm>, #<n>

MOVS <Rd>,<Rm>,LSR <Rs> LSRS <Rd>, <Rm>, <Rs>

30

NC STATE UNIVERSITY

Stack Operations

= Push some or all of registers (R0O-R7,LR) to stack

PUSH {<registers>}

Decrements SP by 4 bytes for each register saved
Pushing LR saves return address

PUSH {rl, r2, LR}

Always pushes registers in same order

= Pop some or all of registers (R0-R7, PC) from stack

31

POP {<registers>}

Increments SP by 4 bytes for each register restored

If PC is popped, then execution will branch to new PC value after this POP instruction (e.g. return address)
POP {r5, ré, r7}

Always pops registers in same order (opposite of pushing)

Add Instructions

= Add registers, update condition flags
= ADDS <Rd>,<Rn><Rm>

= Add registers and carry bit, update condition flags
= ADCS <Rdn><Rm>

= Add registers
= ADD <Rdn>,<Rm>

= Add immediate value to register
= ADDS <Rd>,<Rn>#<imm3>
= ADDS <Rdn>#<imm8>

32

NC STATE UNIVERSITY

NC STATE UNIVERSITY

Add Instructions with Stack Pointer

= Add SP and immediate value
= ADD <Rd>, SP #<imm8>
= ADD SP, SP, #<imm7>

= Add SP and register

= ADD <Rdm>, SP, <Rdm>
= ADD SP, <Rm>

33

Address to Register Pseudo-Instruction

= Add immediate value to PC, write result in register
= ADR <Rd>,<label>

= How is this used?
= Enables storage of constant data near program counter

First, load register R2 with address of const_data
ADR R2, const_data

Second, load const_data into R2

LDR R2, [R2]

= Value must be close to current PC value

34

NC STATE UNIVERSITY

Subtract

= Subtract immediate from register, update condition flags
= SUBS <Rd>, <Rn>, #<imm3>
= SUBS <Rdn>, #<imm8>

= Subtract registers, update condition flags
= SUBS <Rd>, <Rn>, <Rm>

= Subtract registers with carry, update condition flags
= SBCS <Rdn>, <Rm>

= Subtract immediate from SP
= SUB SP, SP #<imm7>

35

NC STATE UNIVERSITY

NC STATE UNIVERSITY

Multiply

= Multiply source registers, save lower word of result in destination register, update condition flags
= MULS <Rdm>, <Rn>, <Rdm>
= <Rdm> = <Rdm> * <Rnp>

= Signed multiply
= Note:

= 32-bit * 32-bit = 64-bit
= Upper word of result is truncated

36

Logical Operations

= All of these instructions update the condition flags

" Bitwise AND registers
= ANDS <Rdn><Rm>

" Bitwise OR registers
* ORRS <Rdn>,<Rm>

" Bitwise Exclusive OR registers
= EORS <Rdn>,<Rm>

" Bitwise AND register and complement of second register
= BICS <Rdn>,<Rm>

" Move inverse of register value to destination
" MVNS <Rd>,<Rm>

" Bitwise AND two registers, discard result
= TST <Rn>,<Rm>

37

NC STATE UNIVERSITY

Compare

= Compare - subtracts second value from first, updates condition flags, discards result
= CMP <Rn>#<imm8>
= CMP <Rn><Rm>

= Compare negative - adds two values, updates condition flags, discards result
= CMN <Rn><Rm>

38

NC STATE UNIVERSITY

Shift and Rotate

= Common features
= All of these instructions update APSR condition flags
= Shift/rotate amount (in number of bits) specified by last operand
= Logical shift left - shifts in zeroes on right
= LSLS <Rd>,<Rm>#<immb5>
= LSLS <Rdn>,<Rm>
= Logical shift right - shifts in zeroes on left
= LSRS <Rd><Rm>#<imm5>
= LSRS <Rdn>,<Rm>
= Arithmetic shift right - shifts in copies of sign bit on left (to maintain arithmetic sign)
= ASRS <Rd><Rm>#<imm5>
= Rotate right
= RORS <Rdn>,<Rm>

39

NC STATE UNIVERSITY

NC STATE UNIVERSITY

Reversing Bytes

= REV - reverse all bytes in word
= REV <Rd>,<Rm>

= REV 16 - reverse bytes in both half-words
= REV16 <Rd><Rm>

= REVSH - reverse bytes in low half-word
(signed) and sign-extend
= REVSH <Rd>,<Rm>

Sign extend

40

NC STATE UNIVERSITY

Changing Program Flow - Branches

= Unconditional Branches
= B <label>

= Target address must be within 2 KB of branch instruction (-2048 B to
+2046 B)

= Conditional Branches
= B<cond> <label>
= <cond> is condition - see next page
= B<cond> target address must be within of branch instruction

" B target address must be within 256 B of branch instruction (-256 B to
+254 B)

41

Condition Codes

= Append to branch instruction
(B) to make a conditional branch

* Full ARM instructions (not
Thumb or Thumb-2) support
conditional execution of
arbitrary instructions

= Note: Carry bit = not-borrow
for compares and subtractions

42

Suffix Flags Meaning

EQ Z=1 Equal. last flag setting result was zero.

NE Z=0 Not equal. last flag setting result was non-zero.
CSorHS C=1 Higher or same. unsigned.

CCorl0 C=0 Lower. unsigned.

MI =1 Negative.

PL =0 Positive or zero.

VS V=1 Overflow.

VC V=0 No overflow.

HI C=landZ=0 Higher, unsigned.

LS C=0or Z=1 Lower or same. unsigned.

GE N=V Greater than or equal. signed.

LT N!I=V Less than. signed.

GT Z=0andN=V Greater than. signed.

LE Z=1lorN!=V Less than or equal. signed.

AL Can have any value Always. This is the default when no suffix is specified.

NC STATE UNIVERSITY

NC STATE UNIVERSITY

Changing Program Flow - Subroutines

= Call = Return
= BL <label> - branch with link = BX <Rd> branch and exchange
= Call subroutine at <label> = Branch to address specified by <Rd>
= PC-relative, range limited to PC+/-16MB = LSB of target address must be set to | to
= Save return address in LR ensure continued execution in Thumb state
= BLX <Rd> - branch with link and = Supports full 4 GB address space
exchange = BX LR - Return from subroutine

= Call subroutine at address in register Rd * POP {PC}
(exchange Rd with PC)

= Supports full 4GB address range

= LSB of target address must be set to | to
ensure continued execution in Thumb state

= Save return address in LR

43

NC STATE UNIVERSITY

Special Register Instructions

= Move to Register from Special Register Special register Contents

= MSR <Rd>, <spec_reg> APSR The flags from previous mstructions.
IAPSR A composite of IPSR and APSE.
= Move to Special Register from Register EAPSR A composite of EPSR and APSR.
= MRS <spec_reg>, <Rd> XPSR A composite of all three PSR registers.
IPSR The Interrupt status register.
= Change Processor State - Modify PRIMASK - The execution status registerd
register))
IEPSR A composite of [PSK and EPSE.
= CPSIE - Interrupt enable
. M5P The Main Stack pointer.
= CPSID - Interrupt disable P
PSP The Process Stack pointer.
PRIMASK Register to mask out configurable exceptions.©
CONTROL The CONTROL register, see The special-purpose

CONTROL register on page B1-215.

44

NC STATE UNIVERSITY

Other

= No Operation - does nothing!
= NOP

= Breakpoint - causes hard fault or debug halt - used to implement software breakpoints
= BKPT #<imm8>

= Wiait for interrupt - Pause program, enter low-power state until a WFI| wake-up event occurs (e.g. an
interrupt)

= WFI

= Supervisor call generates SVC exception (#1 1), same as software interrupt
= SVC #<imm>

45

	Cortex-M0+ CPU Core and �ARM Instruction Set Architecture
	Microcontroller vs. Microprocessor
	Cortex-M0+ Core
	ARM Processor Core Registers
	Operating Modes
	ARM Program Status Register
	ARM Processor Core Registers
	Different Instruction Sets for Different Design Spaces?
	The Memory Wall
	ARM and Thumb Instructions
	Cortex-M Instruction Groups
	Reference for ARM Instruction Set Architecture
	Example Instruction Encoding: ADC (register)
	Example Instruction Encoding: ADD (register)
	Assembler Instruction Format
	Update Condition Codes in APSR?
	Using Registers
	AAPCS Register Use Conventions
	AAPCS Core Register Use
	Instruction Set Summary
	Load and Store Register Instructions
	Memory Maps For Cortex M0+ and MCU
	Memory Maps For Cortex M0+ and MCU
	Endianness
	ARMv6-M Endianness
	Loading/Storing Smaller Data Sizes
	In-Register Size Extension
	Load/Store Multiple
	Load Literal Value into Register
	Move (Pseudo-)Instructions
	Stack Operations
	Add Instructions
	Add Instructions with Stack Pointer
	Address to Register Pseudo-Instruction
	Subtract
	Multiply
	Logical Operations
	Compare
	Shift and Rotate
	Reversing Bytes
	Changing Program Flow - Branches
	Condition Codes
	Changing Program Flow - Subroutines
	Special Register Instructions
	Other

